• Who we are
    • About us
    • Our values
    • Environmental, social & governance
    • Therapeutic areas
  • What we do
    • Consulting (Acsel Health)
    • HEOR & market access
    • Scientific communications
    • Patient engagement
  • Insights
  • News & Events
  • Join us
    • Careers
    • Reasons to join
  • Contact us
  • Menu Menu

Publication Library / Publications

“Bow-tie” optimal pathway discovery analysis of sepsis hospital admissions using the Hospital Episode Statistics database in England

Objective

The “Bow-tie” optimal pathway discovery analysis uses large clinical event datasets to map clinical pathways and to visualize risks (improvement opportunities) before, and outcomes after, a specific clinical event. This proof-of-concept study assesses the use of NHS Hospital Episode Statistics (HES) in England as a potential clinical event dataset for this pathway discovery analysis approach.

Materials and methods

A metaheuristic optimization algorithm was used to perform the “bow-tie” analysis on HES event log data for sepsis (ICD-10 A40/A41) in 2016. Analysis of hospital episodes across inpatient and outpatient departments was performed for the period 730 days before and 365 days after the index sepsis hospitalization event.

Results

HES data captured a sepsis event for 76 523 individuals (>13 years), relating to 580 000 coded events (across 220 sepsis and non-sepsis event classes). The “bow-tie” analysis identified several diagnoses that most frequently preceded hospitalization for sepsis, in line with the expectation that sepsis most frequently occurs in vulnerable populations. A diagnosis of pneumonia (5 290 patients) and urinary tract infections (UTIs; 2 057 patients) most often preceded the sepsis event, with recurrent UTIs acting as a potential indicative risk factor for sepsis.

Discussion

This proof-of-concept study demonstrates that a “bow-tie” pathway discovery analysis of the HES database can be undertaken and provides clinical insights that, with further study, could help improve the identification and management of sepsis. The algorithm can now be more widely applied to HES data to undertake targeted clinical pathway analysis across multiple healthcare conditions.

Authors H de Oliveira, M Prodel, L Lamarsalle, M Inada-Kim, K Ajayi, J Wilkins, S Sekelj, S Beecroft, S Snow, R Slater, A Orlowski
Journal JAMIA Open
Therapeutic Area Infectious diseases and vaccines
Center of Excellence Real-world Evidence & Data Analytics
Year 2020
Read full article

Services

  • Consulting
  • HEOR & market access
  • Scientific communications
  • Creative communications
  • Patient engagement

Company

  • About Us
  • Our values
  • Environmental, social & governance
  • Our commitment to rare disease
  • Careers
  • Reasons to join
  • News & insights
  • Events
  • Locations & contact

Legal and Governance

  • Terms of use
  • Privacy notice
  • Cookie policy
  • IT security measures
  • Modern slavery statement
  • Disclosure UK – ABPI
  • Looking for OpenHealth Company?
  • Legal statements & documents
  • Global ethical business conduct code
  • Suppliers
footer-logo-mark
  • Twitter
  • Linkedin
  • Instagram
  • Facebook

© Copyright OPEN Health 2025. All rights reserved. OPEN Health is a registered trademark.

backtotop-arrow
Scroll to top