• Who we are
    • About us
    • Our values
    • Environmental, social & governance
    • Therapeutic areas
  • What we do
    • Consulting (Acsel Health)
    • HEOR & market access
    • Scientific communications
    • Patient engagement
  • Insights
  • News & Events
  • Join us
    • Careers
    • Reasons to join
  • Contact us
  • Menu Menu

Publication Library / Publications

An innovative approach to modelling the optimal treatment sequence for patients with relapsing–remitting multiple sclerosis: implementation, validation, and impact of the decision-making approach

Introduction

An innovative computational model was developed to address challenges regarding the evaluation of treatment sequences in patients with relapsing–remitting multiple sclerosis (RRMS) through the concept of a ‘virtual’ physician who observes and assesses patients over time. We describe the implementation and validation of the model, then apply this framework as a case study to determine the impact of different decision-making approaches on the optimal sequence of disease-modifying therapies (DMTs) and associated outcomes.

Methods

A patient-level discrete event simulation (DES) was used to model heterogeneity in disease trajectories and outcomes. The evaluation of DMT options was implemented through a Markov model representing the patient’s disease; outcomes included lifetime costs and quality of life. The DES and Markov models underwent internal and external validation. Analyses of the optimal treatment sequence for each patient were based on several decision-making criteria. These treatment sequences were compared to current treatment guidelines.

Results

Internal validation indicated that model outcomes for natural history were consistent with the input parameters used to inform the model. Costs and quality of life outcomes were successfully validated against published reference models. Whereas each decision-making criterion generated a different optimal treatment sequence, cladribine tablets were the only DMT common to all treatment sequences. By choosing treatments on the basis of minimizing disease progression or number of relapses, it was possible to improve on current treatment guidelines; however, these treatment sequences were more costly. Maximizing cost-effectiveness resulted in the lowest costs but was also associated with the worst outcomes.

Conclusions

The model was robust in generating outcomes consistent with published models and studies. It was also able to identify optimal treatment sequences based on different decision criteria. This innovative modelling framework has the potential to simulate individual patient trajectories in the current treatment landscape and may be useful for treatment switching and treatment positioning decisions in RRMS.

Authors M A Piena, S Kroep, C Simons, E Fenwick, G H Harty, S L Wong, B A Van Hout
Journal Advances in Therapy
Therapeutic Area Neurology
Center of Excellence Health Economic Modeling & Meta-analysis
Year 2021
Read full article

Services

  • Consulting
  • HEOR & market access
  • Scientific communications
  • Creative communications
  • Patient engagement

Company

  • About Us
  • Our values
  • Environmental, social & governance
  • Our commitment to rare disease
  • Careers
  • Reasons to join
  • News & insights
  • Events
  • Locations & contact

Legal and Governance

  • Terms of use
  • Privacy notice
  • Cookie policy
  • IT security measures
  • Modern slavery statement
  • Disclosure UK – ABPI
  • Looking for OpenHealth Company?
  • Legal statements & documents
  • Global ethical business conduct code
  • Suppliers
footer-logo-mark
  • Twitter
  • Linkedin
  • Instagram
  • Facebook

© Copyright OPEN Health 2025. All rights reserved. OPEN Health is a registered trademark.

backtotop-arrow
Scroll to top